Abstract:

We describe new analysis techniques for quantifying emissions
factors for 446 samples of forest fire plumes in the Western US
during NASA’s SEAC4RS and the ARCTAS airborne campaigns.
An unmixing analysis suggested clues about which fires
produce ozone without needing addition of urban nitrogen
oxides. Preliminary emission factors and associated
relationships for key fire-type indicators species CO, HCHO,
CH4, CH3CN/NOy, C4H10, SO2, NOz, and several other species
are described.

Regarding technique for emissions, we describe a method to o

compare and categorize individual forest-fire plume samples
from the two missions in a manner that minimizes effects of
intake-CO; and mixing of air-masses. This is known to affect

previous estimates of emission factors. Sequential samples are ®

not required. Mixed-effects regression (ME) methods allow us
to estimate pre-fire values of the Cwot =(CO2 + CO) (and
plume AC:ot) simultaneously with emissions factors for

individual species i, Ax; /ACiot. Another simple but approximate @

methodology is evaluated for errors. In alternation with mixed-
effects regression, another method, we employ another
method, non-negative matrix factorization (NMF) is employed.
NMF allows classification when only mixtures are found in the
observations (i.e., “unmixing”). (Observations are expected to
describe contributions from differing fire chemistries at a
small scale.) Particle emission characteristics (bscat, babs, SSA,
AAE) are closely and individually related to gas-phase
composition. Sample scrubbing for major non-fire influences
on “signal” species with other large proximate sources, e.g. CO
and CH4, was critical to a clear analysis.

Regarding ozone production in plumes, we distinguish fire types as
high-NOy high-VOC, or both. The fire-types with optimal ratios,
higher NOy but not too much reactive VOC associate with the
highest additional ozone. Urban NOy plays a small role for our
selected samples, but fuel nitrogen apparently does.

Why
Sequence Analysis = Emission Factor

(“NERM”, “ERM” ) Often Fails
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Comparison of difference methods for biomass burning emissions assuming
knowledge of pre-fire background concentrations of C,,, = CO, + CO.

Actually observed C,, the fire tracer CH;CN are plotted as the red dots.

The example uses actual (rather typical) data from the ARCTAS flight April 22,
2008.

Normalized Emission Ratio Method. The difference method estimates as emission
factors the slopes deduced form the red triangle (upper triangle too small to
depict), i.e., 0.2 and -2.6.

Enhancement Ratio Method. Regression methods would average this variability
but behave similarly, in this case suggesting high emission factors.

Estimates of background C, ,are shown as dashed, light blue vertical lines, and the
differences of C,,, between samples as dark blue arrows.

The same difference method corrected for the change in background C,,, provides
two much more consistent estimates (green triangle estimates). However it is
possible to estimate emissions factors directly for each point using the slopes of
the green dashed lines (light green numbers).

Additionally, consecutive plume observations are not required.
Several tracers are required.

This behavior of difference-based estimates is true of essentially all the 60-s data
we analyzed. Some more consistent estimates are likely with 10-s data, but biases
do remain [Yokelson et al, 2013]. Our early estimation using differences with the
ARCTAS 10-s data gave many estimates of negative emission factors.

@ A Messy Part: Emission Factors Vary
.. by Fire Type (Affects All Methods)

Variation of Emission factors by fire type for CH3;CN, CO, bgcat
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The same species may have different emission factors
(shown as slopes) for different fires, as illustrated using 5 of
the 446 plume observations. Plot shows values of CO (gray),
bscar (black), and CH3CN (green), all normalized by their
mean at the observed values of x; = Cioc.. With knowledge of
x?, shown as values along x axis, emission factors are
defined, and they vary among types of fires. Types are
indicated by the colors of the dots showing x?. Scaled
emission factors, 1/(xl- — xlp), ppm1, tend to have different
values according to fire type, as lab observations suggest.
Solid colors of the arrows indicate species, over-plotted
dashed-line colors indicate fire type eventually identified.

from Western Forest Fires, Revealing Why Some Produce Their Own Ozone

Three Interlinked Types of Variables

to Solve for Simultaneously:
= Cyor = G

at instance (time) i

“Background C” and so €,

urn ack

The emission factor g; of species j as defined

by fire type (think of CO(flaming), CO(smoldering),...
and

The fire type at instance (time) i same for all species j

Why it’s so complicated:

The first two are solved using mixed-effects (ME) modeling
and the fire type is solved for using non-negative matrix
factorization(NMF). The ME step solves most easily if there
are rough estimates of the fire types: rough ¢, ., and rough
fire types made by NMF. Once the ME step is complete, more
informative NMF assignments and classes are possible.

Experience shows that the ME estimates of C,,, are
surprisingly robust. Fire types depend on good C,, . and, to
some extent, what distinctions are most important to the
scientist.

We chose an NMF that distinguished the traditional
classification by “modified combustion
efficiency” (essentially the ratio A CO / AC,,,,, ).

‘Mixed-Effects Regression ‘

— 0
Cbum = Xi — X

Take two or more chemical species or integrated aerosol properties.

These sets yield an array y;; of species j measured at instance .

We remove any general background value y;) for these y;;, easier to estimate and of less numeric

Two sources of variation to be estimated, a; for the species and x; for the instances.

“Pointer compounds” with nearly complete measurements, varied
chemical character (in fires and atmosphere) and available at 60 sec

Concentration / property Abbreviation Technique

X; is (CO+CO,):

SEAC4RS Data-Analysis Techniques Map True Emission Factors
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Flowchart of the algorithm used to estimate biomass burning emissions. Some steps may not be

needed in simpler datasets.

Separating Effects:

Examining FireTypes

The Key: identification of the C backg (x°)
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HCHO
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The Cy,,, s shown by flight date and individual

Toluene CH.CH, PTRMS
Benzene CH, PTRMS
Formaldehyde HCHO LAS
Acetonitrile CH,CN PTRMS
Absorption Coefficient b,., Abs_5 Nephelometry

Dry, Total, 532 nm
Scattering Coefficient, b o> Scat_5 Nephelometry

Dry, Submicron 550 nm

Carbon monoxide CO LAS, GC, mice()
Methane CH, LAS, GC, mice()
Acetaldehyde CH,CHO PTRMS
Methanol CH,OH PTRMS

G
ot plume sample.
Wisthaler All estimates are made independently of their
Wisthaler neighbors; the consistency is reassuring.
Fried The use of medians to summarize evidence from
Wisthaler differing indicators makes the estimates robust
against difficulties of individual species.
Beyersdortf i
Methane, ( ) though it had
troubled measurements in SEAC4RS, and could
Beyersdorff be confuse with other sources in ARCTAS, does

not show difficulties. Similarly with CO ( ).
Diskin, Blake
Diskin, Blake
Wisthaler

Wisthaler

Tests with ARCTAS 10-sec vs 60-sec measurements suggested essential variability captured.

e Details: Bootstrapping Past
The Messy Part

Variation of Emission factors by rough fire type for CH3CN, CO, bgcat
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Consensus-approximated Cpym

Vij = Yij/mean yi;, Vi
[
and then form a consensus mean

X = 37ij/mean Vij
J
Here the symbol reinforces the idea that X; is just an
estimate and will have a different scale than than the actual
Courn. A regression of X against Cyum can estimate the scale,
but an associated value of a desired quantity like X} , or
indicated zero-point without fire emissions is elusive.

Before estimation of xl-o, emission factors a;, and fire types,
approximations X; of (x; — x{) can be made using a
consensus estimate based on the scaled quantities. X; need
only be measured from O (see text). Three rough fire types
(classes) are shown using a different color set. This process
produces aids the convergence and assessed fit of the
subsequent mixed-effect model estimation step.

Details: But We Want
x-Intercepts Not y-Intercepts
to Get C Backgrounds!

o/ of

y, with error

— 0
yij = ajxl- + C; + eij

where the y-intercepts ¢ are estimated for each instance.

While this misses the true model, it is worthwhile to use

geometry to find approximations for the x). Given

regression estimates for a; and c?, a; and ¢?, we may make
0

many estimates of x?, i.e., £,

0
~0 __ éi

j ~
a;

Vij =~ @jx; — ajéi()/(_aj)
See the figure for a geometrical interpretation of using the
slope estimates to move from y- to x-intercept. We may then
take the median over j of these fclpj for a reasonable estimate
of ) We may also understand different behavior among the
indicator variables. With the background £ and the carbon
burned, C, ., = x; — £, we may procede with ordinary

regression estimates. This allows us a linear mixed-effects
model, easier to compute. For this solution we used Imer ()
in the R package 1me4.
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Western Fires, new SEAC4RS merge CO2.p.CO has reference point 391 ppm

HCHO-like or b, -like

HCHO is likely formed both from VOC oxidation as
well as emitted. The fires with highest €, ., were in
this class, including the very high-burn Rim Fire of
Yosemite sampled in SEAC4RS. Regression lines
are shown for each class. Values of ¢, ~6 ppm
tended to control the slope of these lines in many
cases. Note the similarities in pattern of HCHO and
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Advantages of NMF description:

While instances may be assigned classes, variables (bsc..,, CH3CN) at each
instance are easily seen as mixtures of more basic fire types.

Composition attributes (“metagenes”) following different basic chemistries of combustion may
mix, even at the few-meter scale, and yet still be recognizable. This general description of
samples is appealing. The pursuit of “pure flaming combustion” in aircraft or ground samples
is not required. Basic chemistries may still be identified. (“Chemistries” is shorthand for fuel
composition and burn chemistry, i.e. effects on emissions such as fuel type and moisture, stage

and intensity of combustion, etc.)

Classes may be assigned based on predominant metagene. The NMF technique used here, ‘
“Brunet” NMF, has been shown to be equivalent to multinomial principle components analysis.

NMF techniques relate also to popular K-means clustering techniques. Additionally they
describe the closeness to the “pure” predominant class and measures of contributions of other

class. Clearly, the factorization and the resulting classifications depend on the indicator species
chosen, and selection of a number of classes (metagenes, here 5), is influenced by the
scientists’ interests. Here we chose a factorization emphasizing distinctions in CO, “modified
combustion efficiency.”)

Character of the NMF Classes

We have resisted the urge to give names like “flaming” or
“smoldering” or “distillation” although some likely

correspondences may appeal to you. Instead we give names based
on species which have high emission ratios in this class.

Map of all samples classified by fire types,

Map of flight numbers in
(colors). Area of dots indicate fire size, C,,,n  SEACR4S and ARCTAS Size of

numerals indicates C,, n

Ozone Levels in Fires Which Are
Not Greatly Affected by Urban Emissions

Connection to histories and fuels burned is left for future work.

Predominant Class
Keyed by Color

This class was found only in California, and not in
the Sierra samples. The NOy seems to come from
high-nitrogen fuels, since CH;CN is the highest in

these fires. HCHO (VOC) is lower than the red
HCHO-like class. The locations tend to be in

Southern California, suggesting possibly chapparal
or other dry woodland fuel. There is no correlation
with CH;Cl, an urban emission. We attempted to
remove urban-dominated emissions by various
techniques, though some samples were not far

from urban areas. C,,,, ranged to 10ppm

CH ,-like

This type was seen only in California and Nevada,
and found in both missions. It also had high NOy

but even lower HCHO (VOC). C,,,,,, ranged to

12ppm. CH, in SEAC4RS had to be estimated from
can samples, and samples with CH, from other

large sources had to be removed (otherwise:
negative emission factors). Both acetone and

methanol showed similar behavior.

CO-like
CO had the most similar emission factors among

fire types. HCHO-like fires emitted slightly higher
amounts of CO, but this fire-type also had high CO

emissions, hence the name. The fire type was
common in both missions, and distinguished

plume origins in the Montana multi-smoke-plume
sampling.

“Even’-like

These samples including more aged plumes: note
the progression in the Rim Fire plume moving
north into Nevada. “Even”-like samples may have
other origins. n-Butane is shown: the similarity of

all classes in the graph suggests that dilution

effects are not distorting our results very much.
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Ozone levels affected by many processes besides

D completeto . fire. A “background” concentration is not easy to

Ul e v estimate due to many ozone sources and dilution
0 ~CO-like 2.5/0.18/(-16)

0t R effects.

For the ozone graph below, we allowed any
intercept for ozone at C,,,, = 0. To our surprise, the
very distinct classes HCHO-like, CH;CN-like and
CH,-like (red, green, violet) showed rather
different linear relationships to ¢, .. The CH,-like
. class was associated with the highest ozone, and
the CH;CN class was second. Very high levels of
C,.-, produced notable ozone, e.g., in the Rim Fire
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bR erstoppy o NOz = NOy - NOx showed corresponding behavior,

o 1 ohoree e oo e reversing green and violet. NOz is associated with
. : ozone production, since both originate from
L ' radicals + NOx.
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Ozone Are Very Strong
The bottom two figures " S e e
show the relationship of .| 1 .. P ag
ozone (size of dots) to - g;o SRR
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&% Why the Strong Bifurcation?

at lower total pollution
(green dots vsred dots). The right figure echoes the left but in terms of emission
This follows the theory of ratios HCHO/ C,,,, and NOz/ C, ... The bifurcation of the
photochemical smog, but dots and classes is even more clear, High NOz & Low HCHO
the results are vs Low NOz & High HCHO. Is this due to photochemistry?

unexpectedly clear.

As the abstract suggests, the combination of mixed-effects modeling and
non-negative matrix factorization has solved the threefold problem of

M " M M " " ” " J))
Cpackp €Mission factors a, and variation among fire types (“chemistries”)

Conclusions

However, this first attempt to classify fire types has led to new questions
about fire plume chemistry. Statistics has done its work; other approaches
may now be called for.




